Uncoupling protein 1 expression in adipocytes derived from skeletal muscle fibro/adipogenic progenitors is under genetic and hormonal control
نویسندگان
چکیده
BACKGROUND Intramuscular fatty infiltration is generally associated with the accumulation of white adipocytes in skeletal muscle and unfavourable metabolic outcomes. It is, however, still unclear whether intramuscular adipocytes could also acquire a brown-like phenotype. Here, we detected intramuscular expression of brown adipocyte markers during fatty infiltration in an obesity-resistant mouse strain and extensively compared the potential of two different stem cell populations residing in skeletal muscle to differentiate into brown-like adipocytes. METHODS Fatty infiltration was induced using intramuscular glycerol or cardiotoxin injection in the tibialis anterior muscles of young or aged 129S6/SvEvTac (Sv/129) mice or interleukin-6 (IL-6) knockout mice, and the expression of general and brown adipocyte markers was assessed after 4 weeks. Fibro/adipogenic progenitors (FAPs) and myogenic progenitors were prospectively isolated using fluorescence-activated cell sorting from skeletal muscle of male and female C57Bl6/6J and Sv/129 mice, and monoclonal and polyclonal cultures were treated with brown adipogenic medium. Additionally, FAPs were differentiated with medium supplemented or not with triiodothyronine. RESULTS Although skeletal muscle expression of uncoupling protein 1 (Ucp1) was barely detectable in uninjected tibialis anterior muscle, it was drastically induced following intramuscular adipogenesis in Sv/129 mice and further increased in response to beta 3-adrenergic stimulation. Intramuscular Ucp1 expression did not depend on IL-6 and was preserved in aged skeletal muscle. Myogenic progenitors did not form adipocytes neither in polyclonal nor monoclonal cultures. Fibro/adipogenic progenitors, on the other hand, readily differentiated into brown-like, UCP1+ adipocytes. Uncoupling protein 1 expression in differentiated FAPs was regulated by genetic background, sex, and triiodothyronine treatment independently of adipogenic differentiation levels. CONCLUSIONS Intramuscular adipogenesis is associated with increased Ucp1 expression in skeletal muscle from obesity-resistant mice. Fibro/adipogenic progenitors provide a likely source for intramuscular adipocytes expressing UCP1 under control of both genetic and hormonal factors. Therefore, FAPs constitute a possible target for therapies aiming at the browning of intramuscular adipose tissue and the metabolic improvement of skeletal muscle affected by fatty infiltration.
منابع مشابه
Type 2 Innate Signals Stimulate Fibro/Adipogenic Progenitors to Facilitate Muscle Regeneration
In vertebrates, activation of innate immunity is an early response to injury, implicating it in the regenerative process. However, the mechanisms by which innate signals might regulate stem cell functionality are unknown. Here, we demonstrate that type 2 innate immunity is required for regeneration of skeletal muscle after injury. Muscle damage results in rapid recruitment of eosinophils, which...
متن کاملA reservoir of brown adipocyte progenitors in human skeletal muscle.
Brown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an adipogenic medium, that a stationary populat...
متن کاملHDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles.
Fibro-adipogenic progenitors (FAPs) are important components of the skeletal muscle regenerative environment. Whether FAPs support muscle regeneration or promote fibro-adipogenic degeneration is emerging as a key determinant in the pathogenesis of muscular diseases, including Duchenne muscular dystrophy (DMD). However, the molecular mechanism that controls FAP lineage commitment and activity is...
متن کاملALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which upper and lower motoneurons degenerate leading to muscle wasting, paralysis and eventually death from respiratory failure. Several studies indicate that skeletal muscle contributes to disease progression; however the molecular mechanisms remain elusive. Fibrosis is a common feature in skeletal muscle under chronic...
متن کاملPurification of Progenitors from Skeletal Muscle
Skeletal muscle contains multiple progenitor populations of distinct embryonic origins and developmental potential. Myogenic progenitors, usually residing in a "satellite cell position" between the myofiber plasma membrane and the laminin-rich basement membrane that ensheaths it, are self-renewing cells that are solely committed to the myogenic lineage. We have recently described a second class...
متن کامل